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A Liquid Xenon Imaging Telescope for Gamma-Ray
Astrophysics: Design and Expected Performance

E. Aprile, R. Mukherjee, D. Chen, and A. Bolotnikov

Physics Department and Columbia Astrophysics Laboratory
Columbia University, New York, NY 10027

A high resolution telescope for imaging cosmic 7-ray sources in the MeV region, with an angular
resolution better than 0.5* is being developed as balloon-borne payload. The instrument consists of a
3-D liquid xenon TPC as 7-ray detector, coupled with a coded aperture at a distance of 1 meter. A study
of the actual source distribution of the 1.809 MeV line from the decay of 2eAl and the 511 keV positron-

electron annihiliation line is among the scientific objectives, along with a search for new -),-ray sources.

The telescope design parameters and expected minimum flux sensitivity to line and continuum radiation
are presented. The unique capability of the LXe-TPC as a Compton Polarimeter is also discussed.

1. INTRODUCTION

Gamma-ray telescopes with true imaging ca-
pability and high flux sensitivity are essential for
studying the highest, energy phenomena in the
universe. Fine imaging provides accurate posi-
tioning of the sources detected within the FOV
and good angular resolution to map regions of
diffuse emission and separate point source contri-
butions. The importance of true source imaging
is particularly evident in the study of two of the

most pressing problems in low energy 7-ray as-
tronomy: the 1.089 MeV line emission from the
decay of _SAl and the 511 keV positron-electron
annihilation line emission from the Galactic Cen-
ter.

In 1977, Ramaty and Lingenfelter [1] sug-
gested that galactic nudeo-synthetic production
of 2SAl in supernova events over the past few mil-

lion years could give rise to a detectable 7-ray
line at 1.809 MeV. This line arises from the dec-

t_roncapture (18%) or positron decay (82%) of the
million-year mean life _SAI and was first detected

in 1984 [2] at a flux level of 4.3+0.8 × 10-4 pho-
tons em -_ s -x tad -x at the Galactic Center. Sev-

eral subsequent confirmations of the line energy
and flux level have been mule.. Some potential
sources of 2_AI, which have been proposed, are

supernovae, novae, red giants in the Asymptotic

Giant Branch (AGB), Wolf-Rayet stars or nearby

OB stars (see e.g., [3] for a recent review). Since
these objects have more or less known or inferred

galactic distributions, it is believed that a mea-
surement of the spatial distribution of the SeAl
1.809 MeV line intensity will identify the a6Al

source. The only instrument which could me_-
sure this radiation with imaging capability, is the

Compton telescope, the most advanced version of
which is COMPTEL on the COMPTOI¢ Obser-

vatory. (X)MPTEL however cannot directly mea-
sure the 1.809 MeV spatial distribution. The only
definite statement that can be made about the

26A! spatial distribution from the latest COMP-
TEL results, at the present time, is that a point
source near the Galactic Center can be excluded

[4]. Clearly, there is s requirement to mesmn_
directly the spatial distribution of the 1.809 MeV

line with a true imaging telescope.
As for the 511 keV line, the debate between

point like sad diffuse nature of the emission cow
tinues to date sad can only be fully resolved with
a high level imaging n/ap of the Galactic Center

region at 7-ray energies.
At the present time the OSSE instrument

on the COMPTON Observatory k mapping the

distribution of the annihilation llne [5]. Since
the OSSE meas_ts give the lowest galac-
tic center flux measurements so far Skibo, Ra.

mary and Leventhal [6] have used these results



and other off-center measurements to tezt differ-

ent models for the origin of the diffuse or steady
galactic plane 511 keV component. On the other
hand, the origin of the variable narrow line galac-
tic 511 keV radiation may be associated with the

bright hard X-ray source 1E1740.7-2942 which

was studied by the imaging telescope SIGMA
on the GRANAT satellite during the spring-fall
of 1990 and in early 1991. Sunyaev et al. [7]

have identified three spectral states for this source
which range from a "low state," a normal (Cygnus
X-1 like) state to a hard state in which a bump

appears in the spectrum between (300-600) keV.
The broad feature of tile spectrum has been in-
terpreted as annihilation of positrons in a hot
medium (~ 40 keV). This is consistent with the
temperature of the accretion disk derived from
the X-ray continuum spectrum.

Subsequently it was proposed [8,9] that in

addition this high energy source injects positrons
into a molecular cloud where they slow down and

annihilate to produce the narrow component of
the 511 keV line emission.

Future studies of the 511 keY emission re-

quire the most advanced imaging telescope with
good to excellent energy resolution.

Of the techniques proposed for 7-ray imag-
ing and spectroscopy of astrophysical sources, the
Liquid Xenon Time Projection Chamber (LXe-
TPC) is among the meet promising. The prop-
erties of liquid xenon make it very efficient for 7-
ray detection. When used in an ionization cham-
ber, operated in the time projection mode, this
medium offers a combination of high detection

efficiency, excellent spatial resolution and very
good energy resolution. Like an electronic bub-
.bh chamber, a LXe-TPC with three-dimendoaal
positiou sensitivity is capable of visualizing the
complex _toM of "},-ray events initiated by ei-

•ther Comptou scattering or pair-production. As

a result, efficient background rejection is also
achieved, reducing the requirement for numive
an.ticoincidence shielding of the type that is re-
quired for germanium or sodium iodide 7-ray de-
tectors. The angular resolution of the LXe-TPC
as a Compton telescope is however limited, in the
few MeV region, by the small separation between
two successive 7-ray interactions [13]. To achieve

imaging with good angular resolution at low en-

ergies, the combination of the imaging LXe-TPC
with a coded aperture is proposed.

A unique consequence of the LXe-TPC imag-

ing capability is its sensitivity as a Compton po-
larimeter. Besides the precise determination of
the energy and incident direction of a photon,
determination of its polarization state can give
further information on the source of 7 rays. The
main production mechanisms which can give po-
larized 7 rays are: bremsstrahlung from elec-
tron beams, electron synchrotron radiation, elec-

tron curvature radiation, and 7 rays from de-
excitation of nuclei excited by directed ion beams.
In the case of the Crab Nebula it has been deter-

mined that the nebular X-ray emission is polar-
ized [10]. Existence of UHE (> 10 TM) electrons in
this source could yield polarized nebular 7-rays of
a few MeV. If curvature radiation from electrons

is the source of MeV 7 rays in pulsars, such as

the Crab and Vela, then polarization might also
be expected.

In general it has been recognized in the study
of X-ray sources, that measurement of the direc-
tion and magnitude of the photon polarization

could significantly contribute to a better under-
standing of the physical p_ in compact ob-
jects, such as pulsars, Black Holes sad AGN.

2. TELESCOPE DESIGN

2.1. Introduction

The telescope is schematically shown in Fig.
I. It consists of a coded aperture mask, located
1 meter above a LXe-TPC. The sendtive area of

the TPC k 39 x 28 an _. The active depth of liq-
uid xenon is I0 an, Fig. 2 shows the LXe-TPC

.in more detail. The event trigger to the readout
electronics is provided by the fast primary scintil-

lation light detected by two UV sensitive PMTs.
The intrinsic instrumental angular res_utiou in
the coded nmsk ¢onfigura_ is determined by
the size of the mask unit M, the mask-detector

separation, and by the accuracy to which the pho-
ton interaction points in the detection plane can
be determined. The coded mask that we have

assumed in our design and Monte Carlo simu-
lations consists of a 85 x 83 dement pattern of
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Fig. 1. Schematic of the LXe-TPC/coded mask

imaging T-r_y telescope.

0.91 x 0.58 x 1.2 crns thick blocks d tungsten al-

loy; The I meter separation between the mask

arid the LXe detector plane is determined by

the University of New Hampshire gondola [11]

which we plan to use for the fult balloon flight.
This defines a pixel element of angular dimension
0.65 ° x 0.49 °. The nominal FOV is 28 o x 200

Fig. 2. Schematic of the LXe-TPC detector.

and the source localization accuracy is estimated

to be -.. I arcminute, for alOc, source strength.

For background suppression at balloon altitude

an active shield has been assumed around the de:

tector. The type and amount of shield needed

will ultimately be determined by the type of event

triggering and selection on board, by dead time

consideration, telemetry rate as well as cost and

weight consideration.

2.2. The LXe-TPC: Status of Development

A LXe-TPC wor "kson the principle that free

ionization electrons liberated by a charged parti-

cle in the liquid can drift, under a uniform dectric

field, from their point of creation towards a signal

read-out region. Here the charge signals induced

or collected on sensing electrodes are detected to

yield both the spatial distribution of the ionizing

event and its energy.

For T-rays it is the dectrons or poeitrons cre-

ated by photoabsorption, Compton scattering or
pair production, which will ionize as well as ex-

cite the xenon atoms creating, large number of

electron-ion pairs and scintillation photons. For

3-D imaging of T-ray events in LXe we plan to use

a _ensing dectrodee geometry based on the ¢dg-

byOam a [12].Twoorthogo., 
;,,duction wire plaa_ _pmted from the ddR re-

gioa by a screening @rid, _dve the X-Y event infor-

mation. The measured drift time, referred to the

scintillation trigger, and the known drift velocity
provides the Z-information. The total event en-

.ergy is measured from the total charge collected

on an anode plate, placed below the induction



wires.

In order to verify the feasibility of such a

detector, the Columbia group started in 1989 an

intensive P_,'D program on LXe. The attenuation

length of electrons and UV photons in purified liq-

uid xenon, the ionization and scintillations yields

of electrons and alpha particles, the energy and

spatial resolution have been studied.

The experimental results obtained on these

aspects relevant for the development of a liquid

ionization TPC, are documented in several refer-

ences [13-18]. Especially relevant are the latest

experimental results obtained with a 3.5 liter 2D-

TPC prototype [19] equipped with a multi-wire

structure to detect the induction signals in liquid

xenon. The results demonstrate both the capa-

bility of a large volume LXe detector to provide

similar or better energy resolution than the pre-
viously reported value of 4.5% FWHM for 1 MeV"

radiation, as well _s the imaging capability.
Figure 3 shows an example of collection and

induction signals produced by a 7-ray event in

the LXe-TPC prototype. The induction signal,

which has the expected triangular shape, has a

large S/N ratio of 12:1, even for a typical point-

like charge deposition produced by a 7-ray inter-

action. The dependence of the induced signal on

the lateral position of the drifting electron cloud

Fig. 3. Collection signal (upper trace Gain=l)

and induction signal (lower trace Gain=400) pro-
duced by a 7-ray event in the 3.5 liter LXe-TPC

prototype.

with respect to the wire cell [19], offers the pos-

sibility to derive the spatial coordinate of each

event by weighting the signal anaplitude on neigh-

bouring wires. Thus the spatial resolution in the

X-Y plane, can be better than s/vri'2, where s is

the wire spacing.

Experimental work on the operation and per-

formance of the LXe TPC prototype inaplemented

for full 3-D imaging and triggered by the scintil-

lation light is in progress.

3. TELESCOPE PERFORMANCE:

MONTE CARLO RESULTS

3.1. Background Rate and Miniature Flux

Sensitivity.

To calculate the background expected in the

LXe-TPC/coded mask telescope at balloon alti-

tudes, we have taken into account the dominant

atmospheric and cosmic diffuse components, en-

tering the forward aperture of the telescope or

leaking through the active shield (5 cm thick CsI).

The flux and angular distribution of the atmo-

spheric 7-rays used in the calculation were taken

from the parameterized forms given by Costa ef

al. [20] and the cosmic diffuse spectrum used was

that given by Shofifelder, Graser and Daugherty
[21]. The internal backgrounds from natural ra-

dioactivity, cosmic ray induced radioactivity and
activation of instrument materials have been ne-

glected, as the majority of these single site events

can be rejected by simple fidudal volume cuts.
The results of the calculation are shown in

Fig. 4. The integrated flux over the 0.1-10

MeV region gives about 340 counts/see, e.oasis-

tent with typical background rates measured at
the assumed altitude. An event reconstruction

algorithm based on the kinematics of Compton

scattering was developed and used for identifica-

tion and rejection of background events [22]. As

shown in Fig. 4, a background reduction of ap-
proximately a factor of 10 is obtained by idea-

tifying 7-rays which kinematic.ally couldn't have

come through the FOV of the telescope, and by
applying a fiducial volume cut to remove low en-

ergy events.

Based on the calculated 7-ray detection el_-

dency [22] and the calculated background rate,
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Fig. 4. Monte Carlo calculation of the back-
ground flux at balloon altitude•

we have obtained the 3¢ minimum flux sensi-

tivity shown in Fig. 5• With a typical balloon
flight exposure of 3 x 10%, the 3_r line sensi-

tivity is 6 x 10-5 photons cm -2 s -l (1.8 MeV
line) and 9 x 10-s photons cm -2 s -1 (511 keV
line). The continuum sensitivity is 3 x 10-7 pho-
tons cm -2 s-I keV -l at 1 MeV. Tile sensitivity
curves of the instruments, shown for comparison,

have been taken from Winkler [23]. When com-
bined with the excellent source localization accu-

racy, the high sensitivity of the LXe-TPC tele-

scope makes it competitive with many satellite
• instruments, even with the much shorter obser-

vation time available in a balloon flight•

3.2. Simulated Observations of tile Crab
and 511 keV Line

The Crab Nebula/Pulsar will be the primary
target for the first verification balloon flight of
the LXe-TPC coded mask 7-ray telescope. This

source is one of the most intense in our energy
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Fig. 5. 30 minimum line flux sensitivity of the
LXe-TPC/coded mask 7-ray telescope.

range and is stable, both in intensity and spec-
trum. Monte Carlo simulations of the expected
Crab signal were performed using the complete

telescope system shown in Fig. i.
The Crab Nebula was assumed to be a

point source in the sky with a spectrum equal

to 5.5x10 -4 (E/100 keV) -z2 photons cm -2 s-:
keV -l at 10 MeV [24]. The source was aligned
with the tdescope axis and the observing time
was 104 s. The estimated background of Fig.
4, after event reconstruction, was uniformly dis-
tributed in the detector's plane and added to the
shadowgram of the source. Figure 6 shows the
resulting deconvolved image of the Crab, for the
energy interval 0.3 - 0.5 MeV. The Crab signal
dominates over the background up to several MeV
with a S/N of about 20_,.

Simulated observations have also been per-
formed for the low and high state of the 511 keV
Galactic Center annihilation line. A 104 s expo-
sure time was assumed. The source was placed
in the center of the FOV, and superimposed on



Fig. 6. Monte Carlo simulation of the Crab as

a point 7-ray source in the energy range (0.3-0.5
MeV).

• Fig. 7. Monte Carlo simulation of the 511 keV

Galactic Center point source observed for High
State.

a uniformly distributed background of 4x10 -2
counts s -1 keV -l, as from our estimate. The in-

tensity of the 511 keV line source was chosen to be

2× 10 -4 photons cm -2 s-1 for the "low state" and

1×10 -3 photons crn -2 s -1 for the "high state".

Figure 7 shows the result of the 511 keV inaage

for the "high state". Even in the "low state", the
511 keV flux can be detected by our instrument

at a satisfactory significance level of _ 4a.

3.3. Polarization Sensitivity

The LXe-TPC imaging capability is also

ideal to measure the linear polarization of the

incident "r-ray undergoing Compton scattering.

The linear polarization of "r-rays can be measured

based on the principle that the Compton scat-

tering process is sensitive to the polarization of

the incident "r-ray, the cross-section for Compton

scattering being the largest for the case when the

direction of the scattered ")'-ray is normal to the

polarization vector of the incident 7-ray. The ad-

vantage of a LXe-TPC Compton Polarimeter over

the conventional NaI(TI), CsI(TI) or Ge(Li) dou-

ble scatter Compton telescopes is the enhanced

detection efficiency offered by a single detector

working both as scatterer and absorber, as well

as its combination of good energy and position

sensitivity.

A Monte Carlo program was developed to

estimate the polarization sensitivity of the LXe-

TPC for a 100% polarized 7-ray beam of energy

varying from 300 keV to 4 MeV, incident nor-

mally on the detector surface. Figure 8 shows

the result.For comparison, the polarizationsen-
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Fig. 8. Monte Carlo calculation of the LXe-TPC

polari_.ation sensitivity.



sitivity of the Ge(Li) polarimeter [25], the Si(Li)

[26] and the CsI(TI) polarimeter of tile Imager o,1

INTEGRAL [27] are also shown. Tile unique fea-

ture of the LXe-TPC is its capability to infer the

scattering aslgle 0 and the azimuthal angle #, with

an accuracy of about 0.5 ° [13], for each scattered

"},-ray. We call thus obtain the azimuthal angular

distribution of the scattered 7-rays by selecting

events from differen! intervals of scattering angle.

By applying the detector's response function, cal-

culated or measured during calibration tests with

polarized beams, we can deconvolute the original

7-ray polarization. Figure 9 shows the nmdula-

tion curve in the range ¢ = 0° to ¢ = 90 °, sim-

ulated for 100% polarized T-rays of energy 500
keV.
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Fig. 9. Modulation curve of the LXe-TPC for

100% polarized ?-rays of energy 500 keV.

4. CONCLUSION

The design and expected performance of a

7-ray imaging telescope tailored to the 0.3-10
MeV energy region have been discussed. The

telescope combines the excellent properties of a

liquid xenon TPC as 3-D position sensitive ?-ray

detector with the well established imaging prop-

erties of a coded aperture mask, to achieve high

efficiency, good spectroscopy and angular resolu-

tion over the entire energy range of interest. The

high sensitivity to MeV 7-ray lines and contin-

uum complemented with the good imaging capa-

bility will permit the observation of a variety of

astrophysical sources. Important contributions to

the field of low energy astrophysics as well as new

discoveries are expected even in the maiden bal-

loon flight which is planned for the end of 1994.

This work was supported by NASA (Award

NAGW 2013).
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